A principled derivation of OT and HG within constraint-based phonology

Giorgio Magri (CNRS, University of Paris 8, SFL)

We consider:

- a set Gen of phonological mappings
- a set of *n* relevant constraints
- an order \prec among n-dimensional vectors: $\alpha \prec \beta$ iff α smaller than β

QUESTION

The **constraint-based grammar** G_{\prec} realizes an underlying form x as a surface candidate $y \in Gen(x)$ that is optimal because no other candidate $z \in Gen(x)$ has a smaller vector of constraint violations wrt \prec

There are scores of orders \prec among n-dimensional vectors: why do phonologists only use:

- OT's lexicographic order and
- HG's linear order?

INTUITION

$$G(/ad/) = [ad]$$
 $G(/tada/) = [tada]$
 $G(/adtada/) = [adtada]$

$$G(/adt/) = [ad]$$
 $G(/ada/) = [ada]$
 $G(/adtada/) = [adada]$

G(/adta/) = [adta]

G(/da/) = [da]

 $\overline{G(/adtada/)} = [adtada]$

FORMALIZING THE INTUITION

A surface concatenation $y' \cdot y''$ is **innocuous** (wrt M) provided it neither creates nor dissolves markedness violations: $M(y' \cdot y'') = M(y') + M(y'')$ for every markedness constraint M in M

Example: the underlying strings $\overline{/adta/}$ and $\overline{/da/}$ with candidates obtained by changing obstruent voicing are innocuous relative to NOCOMPCODA, AGREEVOICE, and NOVOICE, as verified here. The axiom thus requires grammars to satisfy $G(\overline{/adtada/}) = G(\overline{/adta/}) \cdot G(\overline{/da/})$

An underlying concatenation $x' \cdot x''$ is **innocuous** (wrt Gen and M) provided the concatenation $y' \cdot y''$ of any two of their surface candidates y' and y'' from Gen(x') and Gen(x'') is innocuous

The intuition above can now be formalized as the following **axiom**: whenever an underlying concatenation $x' \cdot x''$ is innocuous, $G(x' \cdot x'') = G(x') \cdot G(x'')$

MAIN RESULT

An order \prec among n-dimensional vectors yields a constraint-based grammar G_{\prec} that satisfies the axiom if and only if there exist some d weight vectors $\mathbf{w}^{(1)} = (w_1^{(1)}, \dots, w_n^{(1)}) \dots \mathbf{w}^{(d)} = (w_1^{(d)}, \dots, w_n^{(d)})$ such that two arbitrary n-dimensional vectors $\boldsymbol{\alpha} = (\alpha_1 \dots \alpha_n)$ and $\boldsymbol{\beta} = (\beta_1 \dots \beta_n)$ satisfy the inequality $\boldsymbol{\alpha} \prec \boldsymbol{\beta}$ if and only if there exists some index i such that:

• for the first i-1 weight vectors $\mathbf{w}^{(1)}, \ldots, \mathbf{w}^{(i-1)}$, the weighted sum of the components of $\boldsymbol{\alpha}$ is equal to that of the components of $\boldsymbol{\beta}$:

$$\sum_{k=1}^{n} w_k^{(1)} \alpha_k = \sum_{k=1}^{n} w_k^{(1)} \beta_k$$

$$\sum_{k=1}^{n} w_k^{(i-1)} \alpha_k = \sum_{k=1}^{n} w_k^{(i-1)} \beta_k$$

• for the weight vector $\mathbf{w}^{(i)}$, the weighted sum of the components of $\boldsymbol{\alpha}$ is strictly smaller than the weighted sum of the components of $\boldsymbol{\beta}$:

$$\sum_{k=1}^{n} w_k^{(i)} \alpha_k < \sum_{k=1}^{n} w_k^{(i)} \beta_k$$

ANSWERING THE QUESTION

One simplest non-trivial order ≺ corresponds to:

- the smallest number d=1 of weight vectors $\mathbf{w}=\mathbf{w}^{(d=1)}$
- with an arbitrary number of non-zero weights

The constraint-based grammar G_{\prec} corresponding to \prec is the **HG grammar** corresponding to the weight vector w

The other simplest non-trivial order ≺ corresponds to:

- the maximum number d = n of weight vectors
- with a single non-zero weight each

The constraint-based grammar G_{\prec} corresponding to \prec is the **OT grammar** corresponding to the constraint ranking $C_{k_1} \gg C_{k_2} \gg \cdots \gg C_{k_n}$, where k_i is the index of the unique non-zero component of the weight vector $\mathbf{w}^{(i)}$